martes, 17 de mayo de 2011

Clasificacion de la Tabla Periódica

Grupos

A las columnas verticales de la tabla periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia atómica, y por ello, tienen características o propiedades similares entre sí. Por ejemplo, los elementos en el grupo IA tienen valencia de 1 (un electrón en su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son todos extremadamente no reactivos.

Numerados de izquierda a derecha utilizando números arábigos, según la última recomendación de la IUPAC (y entre paréntesis según la antigua propuesta de la IUPAC) de 1988[2] , los grupos de la tabla periódica son:
Grupo 1 (I A): los metales alcalinos
Grupo 2 (II A): los metales alcalinotérreos
Grupo 3 (III B): Familia del Escandio
Grupo 4 (IV B): Familia del Titanio
Grupo 5 (V B): Familia del Vanadio
Grupo 6 (VI B): Familia del Cromo
Grupo 7 (VII B): Familia del Manganeso
Grupo 8 (VIII B): Familia del Hierro
Grupo 9 (VIII B): Familia del Cobalto
Grupo 10 (VIII B): Familia del Níquel
Grupo 11 (I B): Familia del Cobre
Grupo 12 (II B): Familia del Zinc
Grupo 13 (III A): los térreos
Grupo 14 (IV A): los carbonoideos
Grupo 15 (V A): los nitrogenoideos
Grupo 16 (VI A): los calcógenos o anfígenos
Grupo 17 (VII A): los halógenos
Grupo 18 (VIII A): los gases nobles

Períodos

Las filas horizontales de la tabla periódica son llamadas períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca según su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio; ambos tienen sólo el orbital 1s.
La tabla periódica consta de 7 períodos:

Bloques o regiones
La tabla periódica se puede también dividir en bloques de elementos según el orbital que estén ocupando los electrones más externos.
Los bloques o regiones se denominan según la letra que hace referencia al orbital más externo: s, p, d y f. Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos.
CARACTERISTICAS DE LOS ELEMENTOS QUIMICOS


Número atómico↓ Nombre↓ Símbolo↓ Periodo,
Grupo↓
Masa atómica
(g/Mol)↓
Densidad
(g/cm³)
a 20°C↓
Fusión
 (°C)↓
Ebullición
 (°C)↓
Año de su
descubrimiento↓
Descubridor↓
1 Hidrógeno H 1, 1 1.00794(7)(2) (3) (4) 0.084 g/l -259.1 -252.69 1766 Cavendish
2 Helio He 1, 18 4.002602(2)(2) (4) 0.17 g/l -272.2 -268.9 1895 Ramsay y Cleve
3 Litio Li 2, 1 6.941(2)(2) (3) (4) (5) 0.53 180.5 1317 1817 Arfwedson
4 Berilio Be 2, 2 9.012182(3) 1.85 1278 2970 1797 Vauquelin
5 Boro B 2, 13 10.811(7)(2) (3) (4) 2.46 2300 2550 1808 Davy y Gay-Lussac
6 Carbono C 2, 14 12.0107(8)(2) (4) 3.51 3550 4827 Prehistoria Desconocido
7 Nitrógeno N 2, 15 14.0067(2)(2) (4) 1.17 g/l -209.9 -195.8 1772 Rutherford
8 Oxígeno O 2, 16 15.9994(3)(2) (4) 1.33 g/l -218.4 -182.9 1774 Priestly y Scheele
9 Flúor F 2, 17 18.9984032(5) 1.58 g/l -219.6 -188.1 1886 Moissan
10 Neón Ne 2, 18 20.1797(6)(2) (3) 0.84 g/l -248.7 -246.1 1898 Ramsay y Travers
11 Sodio Na 3, 1 22.98976928(2) 0.97 97.8 892 1807 Davy
12 Magnesio Mg 3, 2 24.3050(6) 1.74 648.8 1107 1755 Black
13 Aluminio Al 3, 13 26.9815386(8) 2.70 660.5 2467 1825 Oersted
14 Silicio Si 3, 14 28.0855(3)(4) 2.33 1410 2355 1824 Berzelius
15 Fósforo P 3, 15 30.973762(2) 1.82 44 (P4) 280 (P4) 1669 Brand
16 Azufre S 3, 16 32.065(5)(2) (4) 2.06 113 444.7 Prehistoria Desconocido
17 Cloro Cl 3, 17 35.453(2)(2) (3) (4) 2.95 g/l -34.6 -101 1774 Scheele
18 Argón Ar 3, 18 39.948(1)(2) (4) 1.66 g/l -189.4 -185.9 1894 Ramsay y Rayleigh
19 Potasio K 4, 1 39.0983(1) 0.86 63.7 774 1807 Davy
20 Calcio Ca 4, 2 40.078(4)(2) 1.54 839 1487 1808 Davy
21 Escandio Sc 4, 3 44.955912(6) 2.99 1539 2832 1879 Nilson
22 Titanio Ti 4, 4 47.867(1) 4.51 1660 3260 1791 Gregor y Klaproth
23 Vanadio V 4, 5 50.9415(1) 6.09 1890 3380 1801 del Río
24 Cromo Cr 4, 6 51.9961(6) 7.14 1857 2482 1797 Vauquelin
25 Manganeso Mn 4, 7 54.938045(5) 7.44 1244 2097 1774 Gahn
26 Hierro Fe 4, 8 55.845(2) 7.87 1535 2750 Prehistoria Desconocido
27 Cobalto Co 4, 9 58.933195(5) 8.89 1495 2870 1735 Brandt
28 Níquel Ni 4, 10 58.6934(2) 8.91 1453 2732 1751 Cronstedt
29 Cobre Cu 4, 11 63.546(3)(4) 8.92 1083.5 2595 Prehistoria Desconocido
30 Zinc Zn 4, 12 65.409(4) 7.14 419.6 907 Prehistoria Desconocido
31 Galio Ga 4, 13 69.723(1) 5.91 29.8 2403 1875 Lecoq de Boisbaudran
32 Germanio Ge 4, 14 72.64(1) 5.32 937.4 2830 1886 Winkler
33 Arsénico As 4, 15 74.92160(2) 5.72 613 613
(sublimación)
ca. 1250 Albertus Magnus
34 Selenio Se 4, 16 78.96(3)(4) 4.82 217 685 1817 Berzelius
35 Bromo Br 4, 17 79.904(1) 3.14 -7.3 58.8 1826 Balard
36 Kriptón Kr 4, 18 83.798(2)(2) (3) 3.48 g/l -156.6 -152.3 1898 Ramsay y Travers
37 Rubidio Rb 5, 1 85.4678(3)(2) 1.53 39 688 1861 Bunsen y Kirchhoff
38 Estroncio Sr 5, 2 87.62(1)(2) (4) 2.63 769 1384 1790 Crawford
39 Itrio Y 5, 3 88.90585(2) 4.47 1523 3337 1794 Gadolin
40 Circonio Zr 5, 4 91.224(2)(2) 6.51 1852 4377 1789 Klaproth
41 Niobio Nb 5, 5 92.906 38(2) 8.58 2468 4927 1801 Hatchett
42 Molibdeno Mo 5, 6 95.94(2)(2) 10.28 2617 5560 1778 Scheele
43 Tecnecio Tc 5, 7 [98.9063](1) 11.49 2172 5030 1937 Perrier y Segrè
44 Rutenio Ru 5, 8 101.07(2)(2) 12.45 2310 3900 1844 Klaus
45 Rodio Rh 5, 9 102.90550(2) 12.41 1966 3727 1803 Wollaston
46 Paladio Pd 5, 10 106.42(1)(2) 12.02 1552 3140 1803 Wollaston
47 Plata Ag 5, 11 107.8682(2)(2) 10.49 961.9 2212 Prehistoria Desconocido
48 Cadmio Cd 5, 12 112.411(8)(2) 8.64 321 765 1817 Strohmeyer y Hermann
49 Indio In 5, 13 114.818(3) 7.31 156.2 2080 1863 Reich y Richter
50 Estaño Sn 5, 14 118.710(7)(2) 7.29 232 2270 Prehistoria Desconocido
51 Antimonio Sb 5, 15 121.760(1)(2) 6.69 630.7 1750 Prehistoria Desconocido
52 Telurio Te 5, 16 127.60(3)(2) 6.25 449.6 990 1782 von Reichenstein
53 Yodo I 5, 17 126.90447(3) 4.94 113.5 184.4 1811 Courtois
54 Xenón Xe 5, 18 131.293(6)(2) (3) 4.49 g/l -111.9 -107 1898 Ramsay y Travers
55 Cesio Cs 6, 1 132.9054519(2) 1.90 28.4 690 1860 Kirchhoff y Bunsen
56 Bario Ba 6, 2 137.327(7) 3.65 725 1640 1808 Davy
57 Lantano La 6 138.90547(7)(2) 6.16 920 3454 1839 Mosander
58 Cerio Ce 6 140.116(1)(2) 6.77 798 3257 1803 W. Hisinger y Berzelius
59 Praseodimio Pr 6 140.90765(2) 6.48 931 3212 1895 von Welsbach
60 Neodimio Nd 6 144.242(3)(2) 7.00 1010 3127 1895 von Welsbach
61 Prometio Pm 6 [146.9151](1) 7.22 1080 2730 1945 Marinsky y Glendenin
62 Samario Sm 6 150.36(2)(2) 7.54 1072 1778 1879 Lecoq de Boisbaudran
63 Europio Eu 6 151.964(1)(2) 5.25 822 1597 1901 Demarçay
64 Gadolinio Gd 6 157.25(3)(2) 7.89 1311 3233 1880 de Marignac
65 Terbio Tb 6 158.92535(2) 8.25 1360 3041 1843 Mosander
66 Disprosio Dy 6 162.500(1)(2) 8.56 1409 2335 1886 Lecoq de Boisbaudran
67 Holmio Ho 6 164.93032(2) 8.78 1470 2720 1878 Soret
68 Erbio Er 6 167.259(3)(2) 9.05 1522 2510 1842 Mosander
69 Tulio Tm 6 168.93421(2) 9.32 1545 1727 1879 Cleve
70 Iterbio Yb 6 173.04(3)(2) 6.97 824 1193 1878 de Marignac
71 Lutecio Lu 6, 3 174.967(1)(2) 9.84 1656 3315 1907 Urbain
72 Hafnio Hf 6, 4 178.49(2) 13.31 2150 5400 1923 Coster y de Hevesy
73 Tantalio Ta 6, 5 180.9479(1) 16.68 2996 5425 1802 Ekeberg
74 Wolframio W 6, 6 183.84(1) 19.26 3407 5927 1783 Elhuyar
75 Renio Re 6, 7 186.207(1) 21.03 3180 5627 1925 Noddack, Tacke y Berg
76 Osmio Os 6, 8 190.23(3)(2) 22.61 3045 5027 1803 Tennant
77 Iridio Ir 6, 9 192.217(3) 22.65 2410 4130 1803 Tennant
78 Platino Pt 6, 10 195.084(9) 21.45 1772 3827 1557 Scaliger
79 Oro Au 6, 11 196.966569(4) 19.32 1064.4 2940 Prehistoria Desconocido
80 Mercurio Hg 6, 12 200.59(2) 13.55 -38.9 356.6 Prehistoria Desconocido
81 Talio Tl 6, 13 204.3833(2) 11.85 303.6 1457 1861 Crookes
82 Plomo Pb 6, 14 207.2(1)(2) (4) 11.34 327.5 1740 Prehistoria Desconocido
83 Bismuto Bi 6, 15 208.98040(1) 9.80 271.4 1560 1540 Geoffroy
84 Polonio Po 6, 16 [208.9824](1) 9.20 254 962 1898 Marie y Pierre Curie
85 Astato At 6, 17 [209.9871](1)
302 337 1940 Corson y MacKenzie
86 Radón Rn 6, 18 [222.0176](1) 9.23 g/l -71 -61.8 1900 Dorn
87 Francio Fr 7, 1 [223.0197](1)
27 677 1939 Perey
88 Radio Ra 7, 2 [226.0254](1) 5.50 700 1140 1898 Marie y Pierre Curie
89 Actinio Ac 7 [227.0278](1) 10.07 1047 3197 1899 Debierne
90 Torio Th 7 232.03806(2)(1) (2) 11.72 1750 4787 1829 Berzelius
91 Protactinio Pa 7 231.03588(2)(1) 15.37 1554 4030 1917 Soddy, Cranston y Hahn
92 Uranio U 7 238.02891(3)(1) (2) (3) 18.97 1132.4 3818 1789 Klaproth
93 Neptunio Np 7 [237.0482](1) 20.48 640 3902 1940 McMillan y Abelson
94 Plutonio Pu 7 [244.0642](1) 19.74 641 3327 1940 Seaborg
95 Americio Am 7 [243.0614](1) 13.67 994 2607 1944 Seaborg
96 Curio Cm 7 [247.0703](1) 13.51 1340
1944 Seaborg
97 Berkelio Bk 7 [247.0703](1) 13.25 986
1949 Seaborg
98 Californio Cf 7 [251.0796](1) 15.1 900
1950 Seaborg
99 Einsteinio Es 7 [252.0829](1)
860
1952 Seaborg
100 Fermio Fm 7 [257.0951](1)


1952 Seaborg
101 Mendelevio Md 7 [258.0986](1)


1955 Seaborg
102 Nobelio No 7 [259.1009](1)


1958 Seaborg
103 Lawrencio Lr 7, 3 [260.1053](1)


1961 Ghiorso
104 Rutherfordio Rf 7, 4 [261.1087](1)


1964/69 Flerov
105 Dubnio Db 7, 5 [262.1138](1)


1967/70 Flerov
106 Seaborgio Sg 7, 6 [263.1182](1)


1974 Flerov
107 Bohrio Bh 7, 7 [262.1229](1)


1976 Oganessian
108 Hassio Hs 7, 8 [265](1)


1984 GSI (*)
109 Meitnerio Mt 7, 9 [266](1)


1982 GSI
110 Darmstadtio Ds 7, 10 [269](1)


1994 GSI
111 Roentgenio Rg 7, 11 [272](1)


1994 GSI
112 Copernicio Cn 7, 12 [285](1)


1996 GSI
113 Ununtrio Uut 7, 13 [284](1)


2004 JINR (*), LLNL (*)
114 Ununquadio Uuq 7, 14 [289](1)


1999 JINR
115 Ununpentio Uup 7, 15 [288](1)


2004 JINR, LLNL
116 Ununhexio Uuh 7, 16 [290](1)


2006 JINR, LLNL(**)
117 Ununseptio Uus 7, 17 (1)


2009-2010 JINR
118 Ununoctio Uuo 7, 18 [294](1)


2006

Historia de la Tabla Periódica

Historia
La historia de la tabla periódica está íntimamente relacionada con varios aspectos del desarrollo de la química y la física:
  • El estudio de las propiedades comunes y la clasificación de los elementos
  • Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.

El descubrimiento de los elementos
Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino–térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.
La noción de elemento y las propiedades periódicas
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos.
La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos.
A lo largo del siglo XVIII, las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.
El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.
Los pesos atómicos
A principios del siglo XIX, John Dalton (17661844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (17431794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas).
Dalton empleó los conocimientos sobre proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori.
Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

La Tabla Periódica ¿ Para qué nos sirve ?

La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características.
Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev, fue diseñada por Alfred Werner.